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Computation of Mistuning Effects on Cascade Flutter

Mani Sadeghi*and Feng Liu®
University of California, Irvine, Irvine, California 92697-3975

A computational method is described for predicting flutter of turbomachinery cascades with mistuned blades.
The method solves the unsteady Euler/Navier-Stokes equations for multiple-blade passages on a parallel computer
using the message passing interface. A second-order implicit scheme with dual time-stepping and multigrid is used.
Each individual blade is capable of moving with its own independent frequency and phase angle, thus modeling
a cascade with mistuned blades. Flutter predictions are performed through the energy method. Both phase-angle
and frequency mistuning are studied. It is found that phase-angle mistuning has little effect on stability, whereas
frequency mistuning significantly changes the aerodynamic damping. The important effect of frequency mistuning
is to average out the aerodynamic damping of the tuned blade row over the whole range of interblade phase angles
(IBPA). If a tuned blade row is stable over most of the IBPA range, the blades can be stabilized for the complete

IBPA range through appropriate frequency mistuning.

Nomenclature
coefficient of aerodynamic force in £ direction
aerodynamic work coefficient
blade chord length
total energy per unit mass
translational blade displacement
static pressure
flutter period
time
flow velocity components in x and y directions
grid velocity componentsin x and y directions
relative velocity components (u — uy,, v — v;)
rotational blade displacement
stream tube thickness ratio in x direction
flutter damping coefficient
density
interblade phase angle
= flutter frequency
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I. Introduction

URBOMACHINERY designersare striving forincreasedload-

ing and reduced size and weight of compressor and turbine
blade rows, particularly for aircraft engines. As such, the flutter of
the turbomachinery blades may become a limiting factor in the de-
sign and performance of gas turbine engines. Accurate theoretical
and computational methods in predicting the flutter boundary will
enable us to achieve high performance and low cost by allowing
adequate but not excessive design margins.

Flutter calculations for turbomachinery blade rows often employ
Lane’s’ traveling wave model in which the adjacent blades in a
blade row are assumed to vibrate at the same frequency but with
a constant phase difference, called interblade phase angle (IBPA).
With this model, aerodynamic responses of the blade row can be
determined by using a single blade passage to minimize the com-
putational effort. Consequently, a phase-shifted periodic boundary
condition has to be applied when the IBPA is not zero. The use of
the phase-shifted boundary condition and its implementation in a
flow code, using the traditional “direct store” method of Erdos and
Alzner,? implies that the solution is both temporally and spatially
periodic. In an actual machine, blades are never exactly identical
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because of manufacturing imperfections, which result in nonidenti-
cal vibration frequencies and phase shifts (mistuning) of the blades
in abladerow. Thereis also evidence to show that certainintentional
mistuning may improve the flutter characteristics of a blade row.

Kaza and Kielb® studied effects of mistuning for a cascade os-
cillating in a coupled bending torsion or uncoupled torsion mode.
Aerodynamic loads were calculated on the basis of a linearized in-
compressible flow method for flat plates. They found that mistuning
and alternate mistuning, as well as random mistuning, have a strong
beneficial effect in the case of self-excited vibration. The flutter
speed was increased by increasing the mistuning level. Crawley and
Hall* developed an inverse design procedure for the optimum mis-
tuning of a high-bypass ratio fan. A linearized supersonic aerody-
namic theory is used to compute the unsteady forces in the influence
coefficient form. Imregun and Ewins’® performed numerical studies
on a cascade of flat plates in the incompressible subsonic and su-
personic Mach number range. The structural behavior was modeled
with a lumped-parameter presentation of rigid blade profiles, al-
lowing for structural coupling between the blades. Mistuning and
alternate mistuning in particular were found to have positive effects
by stabilizing critical vibration modes at the expense of damped
ones. A recent experimental and numerical investigation on an an-
nular turbine cascade was done by Nowinski and Panovsky.® The
blades were oscillated in a harmonic torsional mode. Three vibra-
tional modes of the blades were tested: the traveling wave mode, the
single blade mode, and the alternating blade mode. In the latter test
mode, only alternate blades in the cascade were excited in a trav-
eling wave pattern, whereas others remained stationary to simulate
frequency mistuning. Nowinski and Panovsky found that alternate
frequency mistuning reduced the dependence of the aerodynamic
damping coefficient on the IBPA and significantly enhanced the
stability of the tested low-pressure turbine cascade.

Except for Nowinski and Panovsky? all of these authors per-
formed the analysis in the frequency domain by solving an eigen-
value problem of the structural flutter equations with areodynamic
loads as input in the form of influence coefficients. In this paper we
propose to study mistuning in the time domain by directly solving
the unsteady flow of a cascade under mistuned oscillations. Stability
is determined by calculating the aerodynamic damping coefficient
as defined in Bolcs and Fransson.” Although the method is limited
to high mass ratio blades, it provides useful insights into the flut-
ter mechanism, in view of the aerodynamics of the flow through a
cascade that undergoes mistuned blade motions. To perform such
studies, the flow is no longer considered to be periodic in either
space or time. Therefore, the traditional method with phase-shifted
boundary conditions cannot be used. Computation for such flows
must be done over multiple passages.

In a previous work by Ji and Liu,® a multigrid, time-accurate
Navier-Stokes code with a two-equation k- turbulence model
was developed to calculate quasi-three-dimensioml unsteady flows
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around multipleoscillatingturbineblades. The code was made paral-
lel by using the message passing interface (MPI), such that multiple
passages could be calculated without the use of phase-shifted peri-
odic boundary conditions for blade flutter problems. The code ran
efficiently on regular parallel computers or networked clusters of
workstations or PCs. In this paper, we extend the method by Ji and
Liu to studies of mistuning effects. The standard configuration 4 of
a turbine cascade compiled by Bolcs and Fransson’ is used as a test
case. Damping coefficients are obtained for various IBPAs for the
tuned case and compared with results for both phase-angle mistun-
ing and frequency mistuning. It is found that for this case, mistuning
of phase shift has small effects on the flutter characteristics,whereas
mistuning of frequency has a significant effecton the damping coef-
ficients of each blade in the row. Frequency mistuning has the effect
of averagingout the damping coefficient for the tuned bladerow over
the whole range of IBPA because of a temporally changing phase
difference between each blade and the adjacent blade. Therefore, if
atunedbladerow is stable for a majority of the IBPA range, alternate
and random frequency mistuning can stabilize the blades over the
completerange of IBPA. In fact, random frequency mistuning elim-
inates the dependence of the aerodynamic damping coefficient on
the IBPA. The effectof the degree of frequencymistuningis also dis-
cussed in view of the damping coefficient as a measure for stability.

II. Computational Method

For a two-dimensional control volume V with moving bound-
ary 0V the quasi three-dimensional Favre-averaged Navier-Stokes
equations with a k- turbulence model can be written as follows:

o // o(x)wdV + yg 0(x)f dS, + 0(x)g dS,
at 14 A%

= yg 0(x)f, S, + 6(x)g, dS, + // Sdv (1)
A% 14

where the vector

contains the conservative flow variables plus the turbulent kinetic
energy k and the specific dissipation rate o, in the k- turbulence
model by Wilcox.® The vectors

pit pv
puii + p puv + p
pvi pvv
= N = 3
s pEa + pu & pEV + pu ®)
pkii pkv
powit p v

are the Euler fluxes with the velocity components iZ and v relative
to the moving boundary of the control volume. The terms f,, and g,
are the viscous fluxes in the x and y directions, respectively. The
source vector § includes terms due to the variation of 6(x), which
is defined as the stream tube thickness at each x location divided by
the stream tube thickness at x =0. The use of O(x) is to account for
the cross-sectional area change of the blade passage due to a blade
height variation in the flow direction. A detailed description of the
terms in Egs. (1-3) can be found in Ref. 8.

A finite volume method is used for spatial discretization. Equa-
tion (1) can then be written in semidiscrete form:

dw
dr +Rw) =0 4)

where R is the vector of residuals, consisting of the spatially dis-
cretized flux balance of Eq. (1). Time accuracy is achieved by using

a second-order implicit time-discretizationscheme, which is recast
into a pseudotime formulation, as proposed by Jameson!:

w *
a Tt R'(w) =0 5)

For each physical time step in Eq. (4), the solution is sought by
solving Eq. (5) for a steady state in pseudotime ¢*. The benefit of
this reformulationis that convergenceaccelerationtechniques, such
as local time stepping, residual smoothing, and a multigrid method,
can be used in pseudotime without sacrificing time accuracy.

At the inlet and outlet, the boundary conditions are formulated
using the one-dimensionalRiemann invariants normal to the bound-
ary. No noticeable reflections from the boundaries were found. A
phase-shifted periodic boundary condition is applied at the bound-
aries between the passages. For tuned blade rows this condition
becomes

w, =w,(x,t — o/ o) 6)

where subscripts/ and u denote the lower and upper boundaries of
a blade passage, o is the IBPA, and w is the angular frequency of
the blade vibration. To perform calculations with mistuned blades,
the conventional direct store method by Erdos and Alzner® used
to apply the phase-shifted periodic boundary condition is replaced
by pure periodic boundary conditions through the use of multiple
passages. The minimum IBPA that can be simulated is related to the
number of blade passages used in the computation by the following
equation:
360deg

deg) =+ 7
oldeg) number of blade passages ™

Although this limits the IBPA to be discrete numbers and large
numbers of blade passages have to be computed for small IBPA,
it has the advantage of extending the calculations to a full annulus
with nonperiodic motions and mistuned blades. The IBPA o and
the oscillation frequency w can vary from blade to blade, which al-
lows the investigationof both phase-angle mistuning and frequency
mistuning.

Figure 1 shows a cylindrical cut of a blade passage. The x coordi-
nateis along the engine axis. The y coordinateis the circumferential
coordinate, which is equivalent to r0 for a cylindrical cut at radius
r; ¢ is the chord length of the blade profile; and c, is the axial chord.
The blades are assumed to be rigid and follow a motion of a com-
binedbending and torsion mode. For the mth blade, the bendingand
torsion motions can be specified as

R (1) =a(u.ex + pye,) expli(wat + @,)] ®)
a™ (1) = a(uqlc) expli(wat + ¢n)] )

where « is positive counterclockwisein Fig. 1. If h(t) is written as

R (1) = h(" (e, + (" (e, (10)
we can write
R (1) My
Ko | =a| By | expli(out + @)

a("’)(t) /J(z/c

m=0,1,2,... (11)

where m stands for the blade number; ®, =27f, and ¢, are the
angular frequency and the phase of the forced vibration of blade
m. In the tuned case, the constant IBPA is c=¢, — ¢, _;. The
parameter

Hy
H = /Jy (12)
Ha

characterizes the specified modal shape of the combined bending
and torsion motion; a is a general dimensionless amplitude. The
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Fig.1 Blade geometry and motion definition.

Fig.2 Multiple-passage computation using MPIL.

modal parameters i, tt, and 1, all have the dimension of length.
In general, they may be complex numbers when there are phase
differences among the x, y bending motions and the torsion mo-
tion. However, standard configuration 4 does not include torsional
vibration, so that the current work is performed with a pure bending
mode, with a bending angle

5=tan™ (u, /1)

A parallel algorithm is implemented in which each processor
computes the flow through one blade passage, and communication
between blade passages is achieved by using MPI (Fig. 2). The

method scales very well on both parallel computers and networked
workstations. The accuracy of the numerical method and the effi-
ciency of the parallel implementationhave been validatedin Ref. 8.

ITII. Results and Discussion
A. Computation for Tuned Blades

Bolcs and Fransson’ defined several standard test cases for flutter
investigationin turbomachinery.The case 552B of standard config-
uration4 with inlet Mach number M, =0.28, outletisentropicMach
number M, =0.90 and inlet flow angle B; = —45 deg are chosen
for comparison. Earlier comparisons between Euler and Navier-
Stokes results (Ref. 8) did not indicate significant viscous effects
with this configuration. Therefore, in the current work, only Euler
calculations were performed. The calculations were performed on a
mesh of 96 X 24 cells. Calculations on a finer mesh with 112 X 64
cells did not yield significantly different results. In previous inves-
tigations by Liu and Ji,!' a number of 32 real-time steps per flutter
period was found to be sufficient to resolve temporal variations.
Alonso and Jameson!? in a separate study of wing flutter found that
36 time steps per period are sufficient. In the current work 64 time
steps per period were performed, with each real-time step including
46 pseudotime iterations with a Courant-Friedrichs-Lewy number
of 6. The unsteady residual was reduced by three orders of magni-
tude in each real-time step.

Figure 3 shows the steady-state isentropic Mach number distri-
bution over the blade surface. The numerical results agree very well
with the experimental data.

The first harmonic amplitude and phase angle of the unsteady
pressure coefficient are plotted in Figs. 4 and 5 for the cases with
IBPA =90 and 180 deg, respectively. The trends of the computa-
tional and experimental data match reasonably well. However, the
calculation predicts much higher amplitudes over the front half-
chord, a phenomenon that was already mentioned in Ref. 7. The
discrepancies in phase are small, which gives the good prediction
of the stability range shown in Fig. 6, although the amplitude of the
damping coefficient is large compared with the experimental datain
the stableregion. In the region of instability, much better agreement
is achieved. For the investigation of mistuning effects, the test case
with B; =—10deg was chosen, becauseit is unstable over a slightly
larger IBPA range (Fig. 6).
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-~ 6~ ~ B,=-45° Experimental
- — 2 —— B,=-10° Experimental
—=e— [B,=-45° Euler Solution
——— B,=-10° Euler Solution

30

20

| LA B L |

Damping Coefficient
S

N &l
£ A/,G\\ \A\ a
P T~ A
i NG N
[ \L\\\B’\‘/Z,
L A «
.10“1 IR YA [N TR SN YT SN SN S ST SO N NN TR WO S N |
0 90 180 270 360

IBPAIn®
Fig. 6 Damping coefficient over IBPA: 3; =— 45 and — 10 deg.

30

———— Tuned Case
——©& -~ Blade0
i Blade 1

n
(=}

B s e e s e

Damping Coefficient
o

0 90 180 270 360
IBPAIn®

Fig.7 Damping coefficient vs IBPA for blades 0 and 1. Blade 1 is mis-
tuned in phase by +10 deg.

B. Phase Mistuning

In the tuned case, all blades oscillate with identical frequency
o and the same phase difference o between each pair of adjacent
bladesas defined by Eq. (11). A simple way of mistuning the system
is to slightly change the phase of one of the blades, so that the IBPA
is not constant over the blade row. For example, blade 1 in Fig. 2
can be mistuned by a phase shift A o, such that

RO (1) Hy
h(yl)(t) =a| Hy |expli(ot +oc+ Ac)] (13)
oD (1) polc

The phase difference between blades 0 and 1 then becomes o + Ao,
and o — A o between blades 1 and 2, whereas all other IBPA remain
at the original value o. Although this type of phase mistuning is
somewhat artificial, because a real system would pick up its own
phase differences based on the flow and structural conditions, it
serves the purpose of studying the potential effect of mistuned phase
on the motion of flutter.

Figures 7 and 8 show the calculated damping coefficient = as a
function of o for this type of phase mistuning and Ao = +10 deg.
The phase difference o in this plot is the average IBPA of the cas-
cade, which is the same as in the tuned case. Using only four pas-
sages limits the choice for o to 0, 90, 180, and 270 deg. For these
IBPAs, the results for the tuned case, already shown in Fig. 6, are
also plotted in Figs. 7 and 8.

It is obvious that, due to mistuning, the damping coefficient =
varies for different blades. However, only blades 0 and 1 show sig-
nificant changes with respect to the tuned case. Mistuning blade 1
affects principally itself and its immediate neighbors, i.e., blades O
and 2. The blade order is such that blade numberi + 1 is adjacentto
the suction side of blade i (Fig. 2). The flow on the suction surfaces
of the blades is more sensitive to changes in conditions than that on
the pressure surfaces. Consequently,blades 0 and 1 will be affected
most by the mistuned motion of blade 1. The flow around blade 2 is
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Fig.8 Damping coefficient vs IBPA for blades 2 and 3. Blade 1 is mis-
tuned in phase by +10 deg.
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Fig. 9 Damping coefficient vs IBPA for blades 0 and 1. Blade 1 is
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Fig. 10 Damping coefficient vs IBPA for blades 2 and 3. Blade 1 is
mistuned in phase by — 10 deg.

notaffected very much, becauseit hasonlyits less-sensitivepressure
side facing blade 1.

The changes in damping coefficient and therefore stability go in
opposite directions for blades 0 and 1, as shown in Figs. 7 and 8.
Blade 0 mainly feels a phase difference of o + 10 deg at its suction
side. At any o the mistuned value of = qualitatively changes toward
the tuned value for o + 10 deg. The damping coefficient of blade 1,
dominated by a phase difference o — 10 deg on the suction side,
shifts to the tuned value at o — 10 deg. This qualitative behavior
also holds for a negative A o, as demonstrated by the computational
results shown in Figs. 9 and 10. It can be seen that A= is small at
relative extrema and large in between. In general, the absolute value
and sign of AZ appear to depend on the imposed mistuning phase
difference A o and the slope of the tuned stability curve. If Ao is

considerably small, the effect of phase mistuning can be expressed
by the following:
0

~ Ao
0

[1]

A

[1]

q

tuned

C. Frequency Mistuning

Another way to introduce mistuning is to let the blades oscillate
with slightly different frequencies. In a first study, this is done again
with a single blade of four, i.e., blade 1 in Fig. 2 vibrates with
a slightly higher frequency than the other blades. To resolve the
small difference A o between the tuned and the introduced mistuned
frequency,the calculationshave to be performedoveralongerperiod
of time 7 than in the tuned case, i.e., T/ Tiypeq = @/ A .

The motion of the mistuned blade 1 is expressed as

h(V (1) I8
hi,l)(t) =a| Hy |expli(ot + Aot + )] (14)
aM(1) Halc

For Aw = !, o the influence on the damping coefficient is shown

in Figs. 11 and 12. Again only blades O and 1 are significantly
affected. The damping of the mistuned blade 1 is independentof the
IBPA. This is not surprising,because the concept of a constantIBPA
does not apply any more to blade 1. The phase differencesof blade 1
with respect to the three other blades are continuously changing in
time. After one period of the mistuned system, blade 1 has gone
through all IBPAs from O to 360 deg. Its damping coefficient is
close to the tuned = averaged over the IBPA, which is a positive
(stable) value. Blade O still has constant IBPAs with respectto blades
2 and 3. The permanently changing phase difference with respect
to its suction side neighbor (blade 1), however, weakens the IBPA
dependenceof blade 0. It becomes stable at any IBPA. Blades 2 and
3 hardly change, compared with the tuned case.
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Fig. 11 Damping coefficient vs IBPA for blades 0 and 1. Blade 1 is
mistuned in frequency by +7%.
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Fig. 12 Damping coefficient vs IBPA for blades 2 and 3. Blade 1 is
mistuned in frequency by +7%.
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Fig. 13 Damping coefficient vs IBPA. Odd-numbered blades are mis-
tuned in frequency by +7%.

The positive effect on the mistuned blade itself and on one of
its neighbors leads to the idea of alternate mistuning: every second
blade in the row is mistuned in the same way, i.e.,

() I8
() | =a| Hy |expli(or + Aot + mo)]
a(m)(t) #a/c

m=1,3,5... (15

Figure 13 shows the resultfor the same amount of frequency mis-
tuning as in the previous case, but here it is imposed on blades 1
and 3. In this case, all blades are stable, with little dependence on
the IBPA. The reason for this behavior can be explained as follows.
Because the frequency of every other blade in the row is perturbed
from its nominal frequency, each blade is vibrating at a frequency
different than its two immediate neighbors. There is not a fixed
IBPA between any blade and its immediate neighbors. If we ne-
glect the influence by far neighbors, each blade can be viewed as
the mistuned blade in the single blade mistuning situationdiscussed
earlier and shown in Fig. 11, with either a positive or negative fre-
quency perturbation. Consequently, the damping coefficient for this
blade would be independent of the nominal IBPA and would take
the phase average of the tuned values. For this case it becomes pos-
itive, and therefore the blades become stable. Because this is true
for every blade in the row, we expect that all blades become stable
with this alternate mistuning pattern. Indeed, this is confirmed by
the computationalresult shown in Fig. 13. The two sets of damping
coefficients corresponding to the odd- and even-numbered blades
are both positive and almost independent of the nominal IBPA. The
slight differences between the two sets are due to the frequency dif-
ference between the blades. The two tuned cases shown in Fig. 13
indicatethatin the tuned case, the blade motion becomes more stable
with increasing frequency at almost all IBPAs. The odd-numbered
blades can be viewed as mistuned from its neighbors with a posi-
tive frequency perturbation, whereas the even-numberedblades can
be viewed as mistuned with a negative frequency perturbation. As
such, the phase-averageddamping coefficient for the odd-numbered
blades becomes higher than that for the even-numbered blades.

These findings agree qualitatively with the experiment data by
Nowinski and Panovsky, although our computations and analysis
were performed independently, for a different cascade and without
the knowledge of the experimental results.

Althoughthe effectof far neighborsis small, itis still noticeablein
Fig. 13. The damping coefficients are not exactly constant. Instead,
they exhibit small variations with the nominal IBPA at twice the
frequency as that in the tuned case. This is because there is still a
fixed phase difference between each blade and its second neighbors,
and that phase difference is exactly twice the nominal IBPA.

The effect of alternate mistuning in this case can be thought of
as splitting the blade row into two staggered tuned systems damp-
ing each other. The effect of frequency mistuning should not be
thought of as an introduction of new damping. It is rather taking
away the IBPA-specific influence of neighboring blades. Whether
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Fig. 14 Randomlike frequency distribution over 20 blades.
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Fig. 15 Damping coeffcient for configuration shown in Fig. 14.

this leads to more or less stability than in the tuned case depends
on the phase-averaged damping coefficient at the given frequency.
It may be expected that this type of mistuning might introduce ab-
solute instability if the tuned blades exhibit instability over most of
the IBPA range. We have yet to find such a test case to verify this
conjecture.

Aerodynamic decoupling of adjacent blades and, in this case,
stabilizationis achievedby alternatingthe frequency.However, there
is no need for the frequency to follow a certain pattern throughout
the cascade, as long as immediate neighbors oscillate with different
frequencies. The effect is expected to be even stronger if we apply
a randomlike frequency distribution on a large number of blades
(Fig. 14). The damping coefficient for this configurationis shown in
Fig. 15. The horizontallines are the calculated damping coefficients
of the individualblades. There is almostno dependenceon the IBPA,
because blades oscillating at the same frequency are too distant to
influence each other. It is also evident from Fig. 15 that the higher
the frequency, the larger is the damping coefficient, as in the case in
Fig. 13.

It is clear from this discussion that frequency mistuning may sta-
bilize a blade row. The question arises as to how much mistuning,
i.e., Aw, is needed. Even if Aw is infinitesimally small, the phase
difference between adjacentblades would still be constantly chang-
ing with time, although at a slower rate. The damping coefficient is
defined as

Cy

T T
E=e ", Cy = ‘“““‘/ C, dh (16)
mh? T 0

where Ti,eq 1s the period of the tuned case. Our computations show
that the beneficial effect of frequency mistuning is not affected by
the frequency difference A o if one looks only at the damping co-
efficient defined by Eq. (16). This obviously cannot be true when
Ao goes to zero in the limit of the unstable tuned case. To under-
stand this situation, we must recognize that the damping coefficient
as calculated from Eq. (16) in an uncoupled energy method is only
a measure of stability over the overall period 7. In the case of
frequency mistuning, the overall period T is different from Ziyneq
because the blades are oscillating with different frequencies. The
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Work done on blade # 0

Time

Fig.16 Work doneon blade0 vs time for variousfrequency differences.

overall period is determined by the smallest frequency difference
that appears in the system. With decreasingly small frequency dif-
ferences A o, the overall period becomes very long and the phase
differences between adjacent blades change very slowly. It is con-
ceivablethat an originally unstable blade may absorba large amount
of energy from the flow during an initial period of time when the
phase-angledifferencesbetween blades have not yet changed much
from the initial nominal value, although the total energy absorption
will eventually become negative over the long overall period 7. In
that case, the damping coefficient calculated by Eq. (16) would not
be meaningful, because the blade may already have broken before
time T is reached.

To verify this point, we perform calculations of the alternate mis-
tuning case, with Aw=1.0, 0.5, 0.25, and 0% (tuned case) at the
most critical IBPA of 270 deg. Figure 16 shows the instantaneous
work coefficient done on blade 0 vs time for the different mistuning
cases. For clarity, only the envelope, i.e., the temporal maximum of
work, is plotted,except for the case when A w = 1.0%. All cases start
off with amplification. The total maximum is reached at about the
first quarter period, and its magnitude increases continuously with
decreasing frequency difference. This maximum may exceed the
allowable deformation work, and the blade will break, although the
theoreticaldamping coefficient by Eq. (16) is still a positive number.
Short of using a coupled fluid structure interaction approach, such
as that described by He,'? it is not possible to obtain a quantitative
measure of the needed A w, except the qualitative guidance.

IV. Conclusions

A computationalmethod for predicting flutter of turbomachinery
cascades with mistuned blades is presented. The method is based on
solving the unsteady Euler/Navier-Stokes equations through multi-
ple blade passages on a parallel computer. Each individual blade is
capable of moving with its own independent frequency and phase
angle, therefore allowing flutter predictions with either frequency
or phase mistuning. Computations for a turbine blade row show that
mistuning in phase has relatively small effect on the flutter charac-
teristics of the blade row. On the other hand, frequency mistuning
can have significant influence on the damping coefficient of the
mistuned blade and its adjacent neighbor. The result is a damping
coefficientaveraged over the complete IBPA range (0-360 deg), be-
cause the actual phase differences between the mistuned blade and
its adjacent blades are constantly changing within that range, due
to the frequency difference. If the blade is stable over most of the
IBPA rangein the tuned case, the blade will then become stablein an
overall sense in the mistuned case. When this effect is made use of

in constructing a blade row with alternately or randomly mistuned
blades, it is found that frequency mistuning may stabilize all blades
over the whole effective IBPA range. Random mistuning eliminates
entirely the dependence of the aerodynamic damping on the IBPA.
The minimum amount of mistuning needed for stability is also in-
vestigated. It is identified that a blade may absorb too much energy
from the flow if there is not enough frequencydifference,such thatit
may fail in a short time, although the overall aerodynamic damping
is positive over a long period. The studies in this paper, however,
are limited to the use of the energy method, which is only valid for
blades with large mass ratios. More definite studies that include the
effectof frequency and phase shift of the structural systemand accu-
rate prediction of the blade vibration amplitude must be performed
with a coupled fluid structure interaction method.

Acknowledgments

Computations have been performed on the Aeneas parallel com-
puter and the Hewlett-Packard Exemplar SPP2000 parallel com-
puter at the University of California, Irvine. Computations have
also been performed on parallel machines provided by the National
Partnership for Advanced Computational Infrastructure. The au-
thors would like to thank Stefan Irmisch and Thomas Sommer at
Asea Brown Boveri Power Generation, Baden, Switzerland, for use-
ful discussions on the topic of mistuning.

References

Lane, F., “System Mode Shapes in the Flutter of Compressor Blade
Rows,” Journal of the Aeronautical Sciences, Vol. 23, Jan. 1956, pp. 54-66.

2Erdos, J. I, and Alzner, E., “Numerical Solution of Periodic Transsonic
Flow Through a Fan Stage,” NASA CR-2900, 1978.

3Kaza, K.R. V., andKielb, R. E., “Flutter and Response of aMistuned Cas-
cade in Incompressible Flow,” AIAA Journal, Vol. 20, No. 8, 1982, pp. 1120~
1127.

4Crawley, E. F., and Hall, K. C., “Optimization and Mechanisms of Mis-
tuning in Cascades,” Journal of Engineering for Gas Turbines and Power,
Vol. 107, No. 2, 1985, pp. 418-426.

5 Imregun, M., and Ewins, D. J., “Aeroelastic Vibration Analysis of Tuned
and Mistuned Blade Systems,” Unsteady Aerodynamics of Turbomachines
and Propellers Symposium Proceedings, Cambridge Univ. Press, Cam-
bridge, England, U.K., 1984, pp. 149-161.

%Nowinski, M., and Panovsky, J., “Flutter Mechanisms in Low Pressure
Turbine Blades,” American Society of Mechanical Engineers, ASME Paper
98-GT-573,1998.

"Bolcs, A., and Fransson, T. H., “Aeroelasticity in Turbomachines—
Comparison of Theoretical and Experimental Cascade Results,” Communi-
cation du Laboratoire de Thermique Appliquée et de Turbomachines, No. 13,
Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1986.

871, S., and Liu, E, “Flutter Computation of Turbomachinery Cascades
Using a Parallel Unsteady Navier-Stokes Code,” AIAA Journal, Vol. 37,
No. 3, 1999, pp. 320-327.

9Wilcox, D. C., “Reassessment of the Scale-Determinin gEquationfor Ad-
vanced Turbulence Models,” AIAA Journal, Vol.26,No. 11,1988, pp. 1299-
1310.

10Jameson, A., “Time Dependent Calculations Using Multigrid, with Ap-
plications to Unsteady Flows Past Airfoils and Wings,” AIAA Paper91-1596,
June 1991.

ULiu,F,andJi,S., “Unsteady Flow Calculations with a Multigrid Navier-
Stokes Method,” AIAA Journal, Vol. 34, No. 10, 1996, pp. 2047-2053.

12Alonso, J. J., and Jameson, A., “Fully-Implicit Time-Marching Aero-
elastic Solutions,” AIAA Paper 94-0056, Jan. 1994.

3He, L., “2-Dimensional Aero-Structure Coupling in Multi-Bladerow
Environment,” VKI Lecture Series, Aeroelasticity in Axial-Flow Turboma-
chines, May 1999.

E. Livne
Associate Editor



